1343 lines
34 KiB
C
1343 lines
34 KiB
C
|
/* taken from
|
||
|
https://github.com/markkilgard/glut/blob/master/lib/gle/vvector.h
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* vvector.h
|
||
|
*
|
||
|
* FUNCTION:
|
||
|
* This file contains a number of utilities useful for handling
|
||
|
* 3D vectors
|
||
|
*
|
||
|
* HISTORY:
|
||
|
* Written by Linas Vepstas, August 1991
|
||
|
* Added 2D code, March 1993
|
||
|
* Added Outer products, C++ proofed, Linas Vepstas October 1993
|
||
|
*/
|
||
|
|
||
|
#ifndef __GUTIL_VECTOR_H__
|
||
|
#define __GUTIL_VECTOR_H__
|
||
|
|
||
|
#if defined(__cplusplus) || defined(c_plusplus)
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#include <math.h>
|
||
|
// #include "port.h"
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Zero out a 2D vector */
|
||
|
|
||
|
#define VEC_ZERO_2(a) \
|
||
|
{ \
|
||
|
(a)[0] = (a)[1] = 0.0; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Zero out a 3D vector */
|
||
|
|
||
|
#define VEC_ZERO(a) \
|
||
|
{ \
|
||
|
(a)[0] = (a)[1] = (a)[2] = 0.0; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Zero out a 4D vector */
|
||
|
|
||
|
#define VEC_ZERO_4(a) \
|
||
|
{ \
|
||
|
(a)[0] = (a)[1] = (a)[2] = (a)[3] = 0.0; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector copy */
|
||
|
|
||
|
#define VEC_COPY_2(b,a) \
|
||
|
{ \
|
||
|
(b)[0] = (a)[0]; \
|
||
|
(b)[1] = (a)[1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Copy 3D vector */
|
||
|
|
||
|
#define VEC_COPY(b,a) \
|
||
|
{ \
|
||
|
(b)[0] = (a)[0]; \
|
||
|
(b)[1] = (a)[1]; \
|
||
|
(b)[2] = (a)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Copy 4D vector */
|
||
|
|
||
|
#define VEC_COPY_4(b,a) \
|
||
|
{ \
|
||
|
(b)[0] = (a)[0]; \
|
||
|
(b)[1] = (a)[1]; \
|
||
|
(b)[2] = (a)[2]; \
|
||
|
(b)[3] = (a)[3]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector difference */
|
||
|
|
||
|
#define VEC_DIFF_2(v21,v2,v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] - (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] - (v1)[1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector difference */
|
||
|
|
||
|
#define VEC_DIFF(v21,v2,v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] - (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] - (v1)[1]; \
|
||
|
(v21)[2] = (v2)[2] - (v1)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector difference */
|
||
|
|
||
|
#define VEC_DIFF_4(v21,v2,v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] - (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] - (v1)[1]; \
|
||
|
(v21)[2] = (v2)[2] - (v1)[2]; \
|
||
|
(v21)[3] = (v2)[3] - (v1)[3]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector sum */
|
||
|
|
||
|
#define VEC_SUM_2(v21,v2,v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] + (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] + (v1)[1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector sum */
|
||
|
|
||
|
#define VEC_SUM(v21,v2,v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] + (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] + (v1)[1]; \
|
||
|
(v21)[2] = (v2)[2] + (v1)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector sum */
|
||
|
|
||
|
#define VEC_SUM_4(v21,v2,v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] + (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] + (v1)[1]; \
|
||
|
(v21)[2] = (v2)[2] + (v1)[2]; \
|
||
|
(v21)[3] = (v2)[3] + (v1)[3]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* scalar times vector */
|
||
|
|
||
|
#define VEC_SCALE_2(c,a,b) \
|
||
|
{ \
|
||
|
(c)[0] = (a)*(b)[0]; \
|
||
|
(c)[1] = (a)*(b)[1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* scalar times vector */
|
||
|
|
||
|
#define VEC_SCALE(c,a,b) \
|
||
|
{ \
|
||
|
(c)[0] = (a)*(b)[0]; \
|
||
|
(c)[1] = (a)*(b)[1]; \
|
||
|
(c)[2] = (a)*(b)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* scalar times vector */
|
||
|
|
||
|
#define VEC_SCALE_4(c,a,b) \
|
||
|
{ \
|
||
|
(c)[0] = (a)*(b)[0]; \
|
||
|
(c)[1] = (a)*(b)[1]; \
|
||
|
(c)[2] = (a)*(b)[2]; \
|
||
|
(c)[3] = (a)*(b)[3]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* accumulate scaled vector */
|
||
|
|
||
|
#define VEC_ACCUM_2(c,a,b) \
|
||
|
{ \
|
||
|
(c)[0] += (a)*(b)[0]; \
|
||
|
(c)[1] += (a)*(b)[1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* accumulate scaled vector */
|
||
|
|
||
|
#define VEC_ACCUM(c,a,b) \
|
||
|
{ \
|
||
|
(c)[0] += (a)*(b)[0]; \
|
||
|
(c)[1] += (a)*(b)[1]; \
|
||
|
(c)[2] += (a)*(b)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* accumulate scaled vector */
|
||
|
|
||
|
#define VEC_ACCUM_4(c,a,b) \
|
||
|
{ \
|
||
|
(c)[0] += (a)*(b)[0]; \
|
||
|
(c)[1] += (a)*(b)[1]; \
|
||
|
(c)[2] += (a)*(b)[2]; \
|
||
|
(c)[3] += (a)*(b)[3]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector dot product */
|
||
|
|
||
|
#define VEC_DOT_PRODUCT_2(c,a,b) \
|
||
|
{ \
|
||
|
c = (a)[0]*(b)[0] + (a)[1]*(b)[1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector dot product */
|
||
|
|
||
|
#define VEC_DOT_PRODUCT(c,a,b) \
|
||
|
{ \
|
||
|
c = (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector dot product */
|
||
|
|
||
|
#define VEC_DOT_PRODUCT_4(c,a,b) \
|
||
|
{ \
|
||
|
c = (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] + (a)[3]*(b)[3] ; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* vector impact parameter (squared) */
|
||
|
|
||
|
#define VEC_IMPACT_SQ(bsq,direction,position) \
|
||
|
{ \
|
||
|
gleDouble len, llel; \
|
||
|
VEC_DOT_PRODUCT (len, position, position); \
|
||
|
VEC_DOT_PRODUCT (llel, direction, position); \
|
||
|
bsq = len - llel*llel; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* vector impact parameter */
|
||
|
|
||
|
#define VEC_IMPACT(bsq,direction,position) \
|
||
|
{ \
|
||
|
VEC_IMPACT_SQ(bsq,direction,position); \
|
||
|
bsq = sqrt (bsq); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector length */
|
||
|
|
||
|
#define VEC_LENGTH_2(len,a) \
|
||
|
{ \
|
||
|
len = a[0]*a[0] + a[1]*a[1]; \
|
||
|
len = sqrt (len); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector length */
|
||
|
|
||
|
#define VEC_LENGTH(len,a) \
|
||
|
{ \
|
||
|
len = (a)[0]*(a)[0] + (a)[1]*(a)[1]; \
|
||
|
len += (a)[2]*(a)[2]; \
|
||
|
len = sqrt (len); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector length */
|
||
|
|
||
|
#define VEC_LENGTH_4(len,a) \
|
||
|
{ \
|
||
|
len = (a)[0]*(a)[0] + (a)[1]*(a)[1]; \
|
||
|
len += (a)[2]*(a)[2]; \
|
||
|
len += (a)[3] * (a)[3]; \
|
||
|
len = sqrt (len); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* distance between two points */
|
||
|
|
||
|
#define VEC_DISTANCE(len,va,vb) \
|
||
|
{ \
|
||
|
gleDouble tmp[4]; \
|
||
|
VEC_DIFF (tmp, vb, va); \
|
||
|
VEC_LENGTH (len, tmp); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector length */
|
||
|
|
||
|
#define VEC_CONJUGATE_LENGTH(len,a) \
|
||
|
{ \
|
||
|
len = 1.0 - a[0]*a[0] - a[1]*a[1] - a[2]*a[2];\
|
||
|
len = sqrt (len); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector length */
|
||
|
|
||
|
#define VEC_NORMALIZE(a) \
|
||
|
{ \
|
||
|
double len; \
|
||
|
VEC_LENGTH (len,a); \
|
||
|
if (len != 0.0) { \
|
||
|
len = 1.0 / len; \
|
||
|
a[0] *= len; \
|
||
|
a[1] *= len; \
|
||
|
a[2] *= len; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector length */
|
||
|
|
||
|
#define VEC_RENORMALIZE(a,newlen) \
|
||
|
{ \
|
||
|
double len; \
|
||
|
VEC_LENGTH (len,a); \
|
||
|
if (len != 0.0) { \
|
||
|
len = newlen / len; \
|
||
|
a[0] *= len; \
|
||
|
a[1] *= len; \
|
||
|
a[2] *= len; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* 3D Vector cross product yeilding vector */
|
||
|
|
||
|
#define VEC_CROSS_PRODUCT(c,a,b) \
|
||
|
{ \
|
||
|
c[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1]; \
|
||
|
c[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2]; \
|
||
|
c[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector perp -- assumes that n is of unit length
|
||
|
* accepts vector v, subtracts out any component parallel to n */
|
||
|
|
||
|
#define VEC_PERP(vp,v,n) \
|
||
|
{ \
|
||
|
double dot; \
|
||
|
\
|
||
|
VEC_DOT_PRODUCT (dot, v, n); \
|
||
|
vp[0] = (v)[0] - (dot) * (n)[0]; \
|
||
|
vp[1] = (v)[1] - (dot) * (n)[1]; \
|
||
|
vp[2] = (v)[2] - (dot) * (n)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector parallel -- assumes that n is of unit length
|
||
|
* accepts vector v, subtracts out any component perpendicular to n */
|
||
|
|
||
|
#define VEC_PARALLEL(vp,v,n) \
|
||
|
{ \
|
||
|
double dot; \
|
||
|
\
|
||
|
VEC_DOT_PRODUCT (dot, v, n); \
|
||
|
vp[0] = (dot) * (n)[0]; \
|
||
|
vp[1] = (dot) * (n)[1]; \
|
||
|
vp[2] = (dot) * (n)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector reflection -- assumes n is of unit length */
|
||
|
/* Takes vector v, reflects it against reflector n, and returns vr */
|
||
|
|
||
|
#define VEC_REFLECT(vr,v,n) \
|
||
|
{ \
|
||
|
double dot; \
|
||
|
\
|
||
|
VEC_DOT_PRODUCT (dot, v, n); \
|
||
|
vr[0] = (v)[0] - 2.0 * (dot) * (n)[0]; \
|
||
|
vr[1] = (v)[1] - 2.0 * (dot) * (n)[1]; \
|
||
|
vr[2] = (v)[2] - 2.0 * (dot) * (n)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector blending */
|
||
|
/* Takes two vectors a, b, blends them together */
|
||
|
|
||
|
#define VEC_BLEND(vr,sa,a,sb,b) \
|
||
|
{ \
|
||
|
\
|
||
|
vr[0] = (sa) * (a)[0] + (sb) * (b)[0]; \
|
||
|
vr[1] = (sa) * (a)[1] + (sb) * (b)[1]; \
|
||
|
vr[2] = (sa) * (a)[2] + (sb) * (b)[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector print */
|
||
|
|
||
|
#define VEC_PRINT_2(a) \
|
||
|
{ \
|
||
|
double len; \
|
||
|
VEC_LENGTH_2 (len, a); \
|
||
|
printf (" a is %f %f length of a is %f \n", a[0], a[1], len); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector print */
|
||
|
|
||
|
#define VEC_PRINT(a) \
|
||
|
{ \
|
||
|
double len; \
|
||
|
VEC_LENGTH (len, (a)); \
|
||
|
printf (" a is %f %f %f length of a is %f \n", (a)[0], (a)[1], (a)[2], len); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* Vector print */
|
||
|
|
||
|
#define VEC_PRINT_4(a) \
|
||
|
{ \
|
||
|
double len; \
|
||
|
VEC_LENGTH_4 (len, (a)); \
|
||
|
printf (" a is %f %f %f %f length of a is %f \n", \
|
||
|
(a)[0], (a)[1], (a)[2], (a)[3], len); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* print matrix */
|
||
|
|
||
|
#define MAT_PRINT_4X4(mmm) { \
|
||
|
int i,j; \
|
||
|
printf ("matrix mmm is \n"); \
|
||
|
if (mmm == NULL) { \
|
||
|
printf (" Null \n"); \
|
||
|
} else { \
|
||
|
for (i=0; i<4; i++) { \
|
||
|
for (j=0; j<4; j++) { \
|
||
|
printf ("%f ", mmm[i][j]); \
|
||
|
} \
|
||
|
printf (" \n"); \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* print matrix */
|
||
|
|
||
|
#define MAT_PRINT_3X3(mmm) { \
|
||
|
int i,j; \
|
||
|
printf ("matrix mmm is \n"); \
|
||
|
if (mmm == NULL) { \
|
||
|
printf (" Null \n"); \
|
||
|
} else { \
|
||
|
for (i=0; i<3; i++) { \
|
||
|
for (j=0; j<3; j++) { \
|
||
|
printf ("%f ", mmm[i][j]); \
|
||
|
} \
|
||
|
printf (" \n"); \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* print matrix */
|
||
|
|
||
|
#define MAT_PRINT_2X3(mmm) { \
|
||
|
int i,j; \
|
||
|
printf ("matrix mmm is \n"); \
|
||
|
if (mmm == NULL) { \
|
||
|
printf (" Null \n"); \
|
||
|
} else { \
|
||
|
for (i=0; i<2; i++) { \
|
||
|
for (j=0; j<3; j++) { \
|
||
|
printf ("%f ", mmm[i][j]); \
|
||
|
} \
|
||
|
printf (" \n"); \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* initialize matrix */
|
||
|
|
||
|
#define IDENTIFY_MATRIX_3X3(m) \
|
||
|
{ \
|
||
|
m[0][0] = 1.0; \
|
||
|
m[0][1] = 0.0; \
|
||
|
m[0][2] = 0.0; \
|
||
|
\
|
||
|
m[1][0] = 0.0; \
|
||
|
m[1][1] = 1.0; \
|
||
|
m[1][2] = 0.0; \
|
||
|
\
|
||
|
m[2][0] = 0.0; \
|
||
|
m[2][1] = 0.0; \
|
||
|
m[2][2] = 1.0; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* initialize matrix */
|
||
|
|
||
|
#define IDENTIFY_MATRIX_4X4(m) \
|
||
|
{ \
|
||
|
m[0][0] = 1.0; \
|
||
|
m[0][1] = 0.0; \
|
||
|
m[0][2] = 0.0; \
|
||
|
m[0][3] = 0.0; \
|
||
|
\
|
||
|
m[1][0] = 0.0; \
|
||
|
m[1][1] = 1.0; \
|
||
|
m[1][2] = 0.0; \
|
||
|
m[1][3] = 0.0; \
|
||
|
\
|
||
|
m[2][0] = 0.0; \
|
||
|
m[2][1] = 0.0; \
|
||
|
m[2][2] = 1.0; \
|
||
|
m[2][3] = 0.0; \
|
||
|
\
|
||
|
m[3][0] = 0.0; \
|
||
|
m[3][1] = 0.0; \
|
||
|
m[3][2] = 0.0; \
|
||
|
m[3][3] = 1.0; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix copy */
|
||
|
|
||
|
#define COPY_MATRIX_2X2(b,a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[0][1]; \
|
||
|
\
|
||
|
b[1][0] = a[1][0]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
\
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix copy */
|
||
|
|
||
|
#define COPY_MATRIX_2X3(b,a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[0][1]; \
|
||
|
b[0][2] = a[0][2]; \
|
||
|
\
|
||
|
b[1][0] = a[1][0]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[1][2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix copy */
|
||
|
|
||
|
#define COPY_MATRIX_3X3(b,a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[0][1]; \
|
||
|
b[0][2] = a[0][2]; \
|
||
|
\
|
||
|
b[1][0] = a[1][0]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[1][2]; \
|
||
|
\
|
||
|
b[2][0] = a[2][0]; \
|
||
|
b[2][1] = a[2][1]; \
|
||
|
b[2][2] = a[2][2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix copy */
|
||
|
|
||
|
#define COPY_MATRIX_4X4(b,a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[0][1]; \
|
||
|
b[0][2] = a[0][2]; \
|
||
|
b[0][3] = a[0][3]; \
|
||
|
\
|
||
|
b[1][0] = a[1][0]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[1][2]; \
|
||
|
b[1][3] = a[1][3]; \
|
||
|
\
|
||
|
b[2][0] = a[2][0]; \
|
||
|
b[2][1] = a[2][1]; \
|
||
|
b[2][2] = a[2][2]; \
|
||
|
b[2][3] = a[2][3]; \
|
||
|
\
|
||
|
b[3][0] = a[3][0]; \
|
||
|
b[3][1] = a[3][1]; \
|
||
|
b[3][2] = a[3][2]; \
|
||
|
b[3][3] = a[3][3]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix transpose */
|
||
|
|
||
|
#define TRANSPOSE_MATRIX_2X2(b,a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[1][0]; \
|
||
|
\
|
||
|
b[1][0] = a[0][1]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix transpose */
|
||
|
|
||
|
#define TRANSPOSE_MATRIX_3X3(b,a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[1][0]; \
|
||
|
b[0][2] = a[2][0]; \
|
||
|
\
|
||
|
b[1][0] = a[0][1]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[2][1]; \
|
||
|
\
|
||
|
b[2][0] = a[0][2]; \
|
||
|
b[2][1] = a[1][2]; \
|
||
|
b[2][2] = a[2][2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix transpose */
|
||
|
|
||
|
#define TRANSPOSE_MATRIX_4X4(b,a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[1][0]; \
|
||
|
b[0][2] = a[2][0]; \
|
||
|
b[0][3] = a[3][0]; \
|
||
|
\
|
||
|
b[1][0] = a[0][1]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[2][1]; \
|
||
|
b[1][3] = a[3][1]; \
|
||
|
\
|
||
|
b[2][0] = a[0][2]; \
|
||
|
b[2][1] = a[1][2]; \
|
||
|
b[2][2] = a[2][2]; \
|
||
|
b[2][3] = a[3][2]; \
|
||
|
\
|
||
|
b[3][0] = a[0][3]; \
|
||
|
b[3][1] = a[1][3]; \
|
||
|
b[3][2] = a[2][3]; \
|
||
|
b[3][3] = a[3][3]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* multiply matrix by scalar */
|
||
|
|
||
|
#define SCALE_MATRIX_2X2(b,s,a) \
|
||
|
{ \
|
||
|
b[0][0] = (s) * a[0][0]; \
|
||
|
b[0][1] = (s) * a[0][1]; \
|
||
|
\
|
||
|
b[1][0] = (s) * a[1][0]; \
|
||
|
b[1][1] = (s) * a[1][1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* multiply matrix by scalar */
|
||
|
|
||
|
#define SCALE_MATRIX_3X3(b,s,a) \
|
||
|
{ \
|
||
|
b[0][0] = (s) * a[0][0]; \
|
||
|
b[0][1] = (s) * a[0][1]; \
|
||
|
b[0][2] = (s) * a[0][2]; \
|
||
|
\
|
||
|
b[1][0] = (s) * a[1][0]; \
|
||
|
b[1][1] = (s) * a[1][1]; \
|
||
|
b[1][2] = (s) * a[1][2]; \
|
||
|
\
|
||
|
b[2][0] = (s) * a[2][0]; \
|
||
|
b[2][1] = (s) * a[2][1]; \
|
||
|
b[2][2] = (s) * a[2][2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* multiply matrix by scalar */
|
||
|
|
||
|
#define SCALE_MATRIX_4X4(b,s,a) \
|
||
|
{ \
|
||
|
b[0][0] = (s) * a[0][0]; \
|
||
|
b[0][1] = (s) * a[0][1]; \
|
||
|
b[0][2] = (s) * a[0][2]; \
|
||
|
b[0][3] = (s) * a[0][3]; \
|
||
|
\
|
||
|
b[1][0] = (s) * a[1][0]; \
|
||
|
b[1][1] = (s) * a[1][1]; \
|
||
|
b[1][2] = (s) * a[1][2]; \
|
||
|
b[1][3] = (s) * a[1][3]; \
|
||
|
\
|
||
|
b[2][0] = (s) * a[2][0]; \
|
||
|
b[2][1] = (s) * a[2][1]; \
|
||
|
b[2][2] = (s) * a[2][2]; \
|
||
|
b[2][3] = (s) * a[2][3]; \
|
||
|
\
|
||
|
b[3][0] = s * a[3][0]; \
|
||
|
b[3][1] = s * a[3][1]; \
|
||
|
b[3][2] = s * a[3][2]; \
|
||
|
b[3][3] = s * a[3][3]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* multiply matrix by scalar */
|
||
|
|
||
|
#define ACCUM_SCALE_MATRIX_2X2(b,s,a) \
|
||
|
{ \
|
||
|
b[0][0] += (s) * a[0][0]; \
|
||
|
b[0][1] += (s) * a[0][1]; \
|
||
|
\
|
||
|
b[1][0] += (s) * a[1][0]; \
|
||
|
b[1][1] += (s) * a[1][1]; \
|
||
|
}
|
||
|
|
||
|
/* +========================================================== */
|
||
|
/* multiply matrix by scalar */
|
||
|
|
||
|
#define ACCUM_SCALE_MATRIX_3X3(b,s,a) \
|
||
|
{ \
|
||
|
b[0][0] += (s) * a[0][0]; \
|
||
|
b[0][1] += (s) * a[0][1]; \
|
||
|
b[0][2] += (s) * a[0][2]; \
|
||
|
\
|
||
|
b[1][0] += (s) * a[1][0]; \
|
||
|
b[1][1] += (s) * a[1][1]; \
|
||
|
b[1][2] += (s) * a[1][2]; \
|
||
|
\
|
||
|
b[2][0] += (s) * a[2][0]; \
|
||
|
b[2][1] += (s) * a[2][1]; \
|
||
|
b[2][2] += (s) * a[2][2]; \
|
||
|
}
|
||
|
|
||
|
/* +========================================================== */
|
||
|
/* multiply matrix by scalar */
|
||
|
|
||
|
#define ACCUM_SCALE_MATRIX_4X4(b,s,a) \
|
||
|
{ \
|
||
|
b[0][0] += (s) * a[0][0]; \
|
||
|
b[0][1] += (s) * a[0][1]; \
|
||
|
b[0][2] += (s) * a[0][2]; \
|
||
|
b[0][3] += (s) * a[0][3]; \
|
||
|
\
|
||
|
b[1][0] += (s) * a[1][0]; \
|
||
|
b[1][1] += (s) * a[1][1]; \
|
||
|
b[1][2] += (s) * a[1][2]; \
|
||
|
b[1][3] += (s) * a[1][3]; \
|
||
|
\
|
||
|
b[2][0] += (s) * a[2][0]; \
|
||
|
b[2][1] += (s) * a[2][1]; \
|
||
|
b[2][2] += (s) * a[2][2]; \
|
||
|
b[2][3] += (s) * a[2][3]; \
|
||
|
\
|
||
|
b[3][0] += (s) * a[3][0]; \
|
||
|
b[3][1] += (s) * a[3][1]; \
|
||
|
b[3][2] += (s) * a[3][2]; \
|
||
|
b[3][3] += (s) * a[3][3]; \
|
||
|
}
|
||
|
|
||
|
/* +========================================================== */
|
||
|
/* matrix product */
|
||
|
/* c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
|
||
|
|
||
|
#define MATRIX_PRODUCT_2X2(c,a,b) \
|
||
|
{ \
|
||
|
c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]; \
|
||
|
c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]; \
|
||
|
\
|
||
|
c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]; \
|
||
|
c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]; \
|
||
|
\
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix product */
|
||
|
/* c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
|
||
|
|
||
|
#define MATRIX_PRODUCT_3X3(c,a,b) \
|
||
|
{ \
|
||
|
c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]; \
|
||
|
c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]; \
|
||
|
c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]; \
|
||
|
\
|
||
|
c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]; \
|
||
|
c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]; \
|
||
|
c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]; \
|
||
|
\
|
||
|
c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]; \
|
||
|
c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]; \
|
||
|
c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix product */
|
||
|
/* c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
|
||
|
|
||
|
#define MATRIX_PRODUCT_4X4(c,a,b) \
|
||
|
{ \
|
||
|
c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]+a[0][3]*b[3][0];\
|
||
|
c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]+a[0][3]*b[3][1];\
|
||
|
c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]+a[0][3]*b[3][2];\
|
||
|
c[0][3] = a[0][0]*b[0][3]+a[0][1]*b[1][3]+a[0][2]*b[2][3]+a[0][3]*b[3][3];\
|
||
|
\
|
||
|
c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]+a[1][3]*b[3][0];\
|
||
|
c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]+a[1][3]*b[3][1];\
|
||
|
c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]+a[1][3]*b[3][2];\
|
||
|
c[1][3] = a[1][0]*b[0][3]+a[1][1]*b[1][3]+a[1][2]*b[2][3]+a[1][3]*b[3][3];\
|
||
|
\
|
||
|
c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]+a[2][3]*b[3][0];\
|
||
|
c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]+a[2][3]*b[3][1];\
|
||
|
c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]+a[2][3]*b[3][2];\
|
||
|
c[2][3] = a[2][0]*b[0][3]+a[2][1]*b[1][3]+a[2][2]*b[2][3]+a[2][3]*b[3][3];\
|
||
|
\
|
||
|
c[3][0] = a[3][0]*b[0][0]+a[3][1]*b[1][0]+a[3][2]*b[2][0]+a[3][3]*b[3][0];\
|
||
|
c[3][1] = a[3][0]*b[0][1]+a[3][1]*b[1][1]+a[3][2]*b[2][1]+a[3][3]*b[3][1];\
|
||
|
c[3][2] = a[3][0]*b[0][2]+a[3][1]*b[1][2]+a[3][2]*b[2][2]+a[3][3]*b[3][2];\
|
||
|
c[3][3] = a[3][0]*b[0][3]+a[3][1]*b[1][3]+a[3][2]*b[2][3]+a[3][3]*b[3][3];\
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix times vector */
|
||
|
|
||
|
#define MAT_DOT_VEC_2X2(p,m,v) \
|
||
|
{ \
|
||
|
p[0] = m[0][0]*v[0] + m[0][1]*v[1]; \
|
||
|
p[1] = m[1][0]*v[0] + m[1][1]*v[1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix times vector */
|
||
|
|
||
|
#define MAT_DOT_VEC_3X3(p,m,v) \
|
||
|
{ \
|
||
|
p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2]; \
|
||
|
p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2]; \
|
||
|
p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* matrix times vector */
|
||
|
|
||
|
#define MAT_DOT_VEC_4X4(p,m,v) \
|
||
|
{ \
|
||
|
p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]*v[3]; \
|
||
|
p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]*v[3]; \
|
||
|
p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]*v[3]; \
|
||
|
p[3] = m[3][0]*v[0] + m[3][1]*v[1] + m[3][2]*v[2] + m[3][3]*v[3]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* vector transpose times matrix */
|
||
|
/* p[j] = v[0]*m[0][j] + v[1]*m[1][j] + v[2]*m[2][j]; */
|
||
|
|
||
|
#define VEC_DOT_MAT_3X3(p,v,m) \
|
||
|
{ \
|
||
|
p[0] = v[0]*m[0][0] + v[1]*m[1][0] + v[2]*m[2][0]; \
|
||
|
p[1] = v[0]*m[0][1] + v[1]*m[1][1] + v[2]*m[2][1]; \
|
||
|
p[2] = v[0]*m[0][2] + v[1]*m[1][2] + v[2]*m[2][2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* affine matrix times vector */
|
||
|
/* The matrix is assumed to be an affine matrix, with last two
|
||
|
* entries representing a translation */
|
||
|
|
||
|
#define MAT_DOT_VEC_2X3(p,m,v) \
|
||
|
{ \
|
||
|
p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]; \
|
||
|
p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* inverse transpose of matrix times vector
|
||
|
*
|
||
|
* This macro computes inverse transpose of matrix m,
|
||
|
* and multiplies vector v into it, to yeild vector p
|
||
|
*
|
||
|
* DANGER !!! Do Not use this on normal vectors!!!
|
||
|
* It will leave normals the wrong length !!!
|
||
|
* See macro below for use on normals.
|
||
|
*/
|
||
|
|
||
|
#define INV_TRANSP_MAT_DOT_VEC_2X2(p,m,v) \
|
||
|
{ \
|
||
|
gleDouble det; \
|
||
|
\
|
||
|
det = m[0][0]*m[1][1] - m[0][1]*m[1][0]; \
|
||
|
p[0] = m[1][1]*v[0] - m[1][0]*v[1]; \
|
||
|
p[1] = - m[0][1]*v[0] + m[0][0]*v[1]; \
|
||
|
\
|
||
|
/* if matrix not singular, and not orthonormal, then renormalize */ \
|
||
|
if ((det!=1.0) && (det != 0.0)) { \
|
||
|
det = 1.0 / det; \
|
||
|
p[0] *= det; \
|
||
|
p[1] *= det; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* transform normal vector by inverse transpose of matrix
|
||
|
* and then renormalize the vector
|
||
|
*
|
||
|
* This macro computes inverse transpose of matrix m,
|
||
|
* and multiplies vector v into it, to yeild vector p
|
||
|
* Vector p is then normalized.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#define NORM_XFORM_2X2(p,m,v) \
|
||
|
{ \
|
||
|
double len; \
|
||
|
\
|
||
|
/* do nothing if off-diagonals are zero and diagonals are \
|
||
|
* equal */ \
|
||
|
if ((m[0][1] != 0.0) || (m[1][0] != 0.0) || (m[0][0] != m[1][1])) { \
|
||
|
p[0] = m[1][1]*v[0] - m[1][0]*v[1]; \
|
||
|
p[1] = - m[0][1]*v[0] + m[0][0]*v[1]; \
|
||
|
\
|
||
|
len = p[0]*p[0] + p[1]*p[1]; \
|
||
|
len = 1.0 / sqrt (len); \
|
||
|
p[0] *= len; \
|
||
|
p[1] *= len; \
|
||
|
} else { \
|
||
|
VEC_COPY_2 (p, v); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
|
||
|
#define OUTER_PRODUCT_2X2(m,v,t) \
|
||
|
{ \
|
||
|
m[0][0] = v[0] * t[0]; \
|
||
|
m[0][1] = v[0] * t[1]; \
|
||
|
\
|
||
|
m[1][0] = v[1] * t[0]; \
|
||
|
m[1][1] = v[1] * t[1]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
|
||
|
#define OUTER_PRODUCT_3X3(m,v,t) \
|
||
|
{ \
|
||
|
m[0][0] = v[0] * t[0]; \
|
||
|
m[0][1] = v[0] * t[1]; \
|
||
|
m[0][2] = v[0] * t[2]; \
|
||
|
\
|
||
|
m[1][0] = v[1] * t[0]; \
|
||
|
m[1][1] = v[1] * t[1]; \
|
||
|
m[1][2] = v[1] * t[2]; \
|
||
|
\
|
||
|
m[2][0] = v[2] * t[0]; \
|
||
|
m[2][1] = v[2] * t[1]; \
|
||
|
m[2][2] = v[2] * t[2]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
|
||
|
#define OUTER_PRODUCT_4X4(m,v,t) \
|
||
|
{ \
|
||
|
m[0][0] = v[0] * t[0]; \
|
||
|
m[0][1] = v[0] * t[1]; \
|
||
|
m[0][2] = v[0] * t[2]; \
|
||
|
m[0][3] = v[0] * t[3]; \
|
||
|
\
|
||
|
m[1][0] = v[1] * t[0]; \
|
||
|
m[1][1] = v[1] * t[1]; \
|
||
|
m[1][2] = v[1] * t[2]; \
|
||
|
m[1][3] = v[1] * t[3]; \
|
||
|
\
|
||
|
m[2][0] = v[2] * t[0]; \
|
||
|
m[2][1] = v[2] * t[1]; \
|
||
|
m[2][2] = v[2] * t[2]; \
|
||
|
m[2][3] = v[2] * t[3]; \
|
||
|
\
|
||
|
m[3][0] = v[3] * t[0]; \
|
||
|
m[3][1] = v[3] * t[1]; \
|
||
|
m[3][2] = v[3] * t[2]; \
|
||
|
m[3][3] = v[3] * t[3]; \
|
||
|
}
|
||
|
|
||
|
/* +========================================================== */
|
||
|
/* outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
|
||
|
#define ACCUM_OUTER_PRODUCT_2X2(m,v,t) \
|
||
|
{ \
|
||
|
m[0][0] += v[0] * t[0]; \
|
||
|
m[0][1] += v[0] * t[1]; \
|
||
|
\
|
||
|
m[1][0] += v[1] * t[0]; \
|
||
|
m[1][1] += v[1] * t[1]; \
|
||
|
}
|
||
|
|
||
|
/* +========================================================== */
|
||
|
/* outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
|
||
|
#define ACCUM_OUTER_PRODUCT_3X3(m,v,t) \
|
||
|
{ \
|
||
|
m[0][0] += v[0] * t[0]; \
|
||
|
m[0][1] += v[0] * t[1]; \
|
||
|
m[0][2] += v[0] * t[2]; \
|
||
|
\
|
||
|
m[1][0] += v[1] * t[0]; \
|
||
|
m[1][1] += v[1] * t[1]; \
|
||
|
m[1][2] += v[1] * t[2]; \
|
||
|
\
|
||
|
m[2][0] += v[2] * t[0]; \
|
||
|
m[2][1] += v[2] * t[1]; \
|
||
|
m[2][2] += v[2] * t[2]; \
|
||
|
}
|
||
|
|
||
|
/* +========================================================== */
|
||
|
/* outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
|
||
|
#define ACCUM_OUTER_PRODUCT_4X4(m,v,t) \
|
||
|
{ \
|
||
|
m[0][0] += v[0] * t[0]; \
|
||
|
m[0][1] += v[0] * t[1]; \
|
||
|
m[0][2] += v[0] * t[2]; \
|
||
|
m[0][3] += v[0] * t[3]; \
|
||
|
\
|
||
|
m[1][0] += v[1] * t[0]; \
|
||
|
m[1][1] += v[1] * t[1]; \
|
||
|
m[1][2] += v[1] * t[2]; \
|
||
|
m[1][3] += v[1] * t[3]; \
|
||
|
\
|
||
|
m[2][0] += v[2] * t[0]; \
|
||
|
m[2][1] += v[2] * t[1]; \
|
||
|
m[2][2] += v[2] * t[2]; \
|
||
|
m[2][3] += v[2] * t[3]; \
|
||
|
\
|
||
|
m[3][0] += v[3] * t[0]; \
|
||
|
m[3][1] += v[3] * t[1]; \
|
||
|
m[3][2] += v[3] * t[2]; \
|
||
|
m[3][3] += v[3] * t[3]; \
|
||
|
}
|
||
|
|
||
|
/* +========================================================== */
|
||
|
/* determinant of matrix
|
||
|
*
|
||
|
* Computes determinant of matrix m, returning d
|
||
|
*/
|
||
|
|
||
|
#define DETERMINANT_2X2(d,m) \
|
||
|
{ \
|
||
|
d = m[0][0] * m[1][1] - m[0][1] * m[1][0]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* determinant of matrix
|
||
|
*
|
||
|
* Computes determinant of matrix m, returning d
|
||
|
*/
|
||
|
|
||
|
#define DETERMINANT_3X3(d,m) \
|
||
|
{ \
|
||
|
d = m[0][0] * (m[1][1]*m[2][2] - m[1][2] * m[2][1]); \
|
||
|
d -= m[0][1] * (m[1][0]*m[2][2] - m[1][2] * m[2][0]); \
|
||
|
d += m[0][2] * (m[1][0]*m[2][1] - m[1][1] * m[2][0]); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* i,j,th cofactor of a 4x4 matrix
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#define COFACTOR_4X4_IJ(fac,m,i,j) \
|
||
|
{ \
|
||
|
int ii[4], jj[4], k; \
|
||
|
\
|
||
|
/* compute which row, columnt to skip */ \
|
||
|
for (k=0; k<i; k++) ii[k] = k; \
|
||
|
for (k=i; k<3; k++) ii[k] = k+1; \
|
||
|
for (k=0; k<j; k++) jj[k] = k; \
|
||
|
for (k=j; k<3; k++) jj[k] = k+1; \
|
||
|
\
|
||
|
(fac) = m[ii[0]][jj[0]] * (m[ii[1]][jj[1]]*m[ii[2]][jj[2]] \
|
||
|
- m[ii[1]][jj[2]]*m[ii[2]][jj[1]]); \
|
||
|
(fac) -= m[ii[0]][jj[1]] * (m[ii[1]][jj[0]]*m[ii[2]][jj[2]] \
|
||
|
- m[ii[1]][jj[2]]*m[ii[2]][jj[0]]);\
|
||
|
(fac) += m[ii[0]][jj[2]] * (m[ii[1]][jj[0]]*m[ii[2]][jj[1]] \
|
||
|
- m[ii[1]][jj[1]]*m[ii[2]][jj[0]]);\
|
||
|
\
|
||
|
/* compute sign */ \
|
||
|
k = i+j; \
|
||
|
if ( k != (k/2)*2) { \
|
||
|
(fac) = -(fac); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* determinant of matrix
|
||
|
*
|
||
|
* Computes determinant of matrix m, returning d
|
||
|
*/
|
||
|
|
||
|
#define DETERMINANT_4X4(d,m) \
|
||
|
{ \
|
||
|
double cofac; \
|
||
|
COFACTOR_4X4_IJ (cofac, m, 0, 0); \
|
||
|
d = m[0][0] * cofac; \
|
||
|
COFACTOR_4X4_IJ (cofac, m, 0, 1); \
|
||
|
d += m[0][1] * cofac; \
|
||
|
COFACTOR_4X4_IJ (cofac, m, 0, 2); \
|
||
|
d += m[0][2] * cofac; \
|
||
|
COFACTOR_4X4_IJ (cofac, m, 0, 3); \
|
||
|
d += m[0][3] * cofac; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* cofactor of matrix
|
||
|
*
|
||
|
* Computes cofactor of matrix m, returning a
|
||
|
*/
|
||
|
|
||
|
#define COFACTOR_2X2(a,m) \
|
||
|
{ \
|
||
|
a[0][0] = (m)[1][1]; \
|
||
|
a[0][1] = - (m)[1][0]; \
|
||
|
a[1][0] = - (m)[0][1]; \
|
||
|
a[1][1] = (m)[0][0]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* cofactor of matrix
|
||
|
*
|
||
|
* Computes cofactor of matrix m, returning a
|
||
|
*/
|
||
|
|
||
|
#define COFACTOR_3X3(a,m) \
|
||
|
{ \
|
||
|
a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; \
|
||
|
a[0][1] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); \
|
||
|
a[0][2] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; \
|
||
|
a[1][0] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); \
|
||
|
a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; \
|
||
|
a[1][2] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); \
|
||
|
a[2][0] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; \
|
||
|
a[2][1] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); \
|
||
|
a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* cofactor of matrix
|
||
|
*
|
||
|
* Computes cofactor of matrix m, returning a
|
||
|
*/
|
||
|
|
||
|
#define COFACTOR_4X4(a,m) \
|
||
|
{ \
|
||
|
int i,j; \
|
||
|
\
|
||
|
for (i=0; i<4; i++) { \
|
||
|
for (j=0; j<4; j++) { \
|
||
|
COFACTOR_4X4_IJ (a[i][j], m, i, j); \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* adjoint of matrix
|
||
|
*
|
||
|
* Computes adjoint of matrix m, returning a
|
||
|
* (Note that adjoint is just the transpose of the cofactor matrix)
|
||
|
*/
|
||
|
|
||
|
#define ADJOINT_2X2(a,m) \
|
||
|
{ \
|
||
|
a[0][0] = (m)[1][1]; \
|
||
|
a[1][0] = - (m)[1][0]; \
|
||
|
a[0][1] = - (m)[0][1]; \
|
||
|
a[1][1] = (m)[0][0]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* adjoint of matrix
|
||
|
*
|
||
|
* Computes adjoint of matrix m, returning a
|
||
|
* (Note that adjoint is just the transpose of the cofactor matrix)
|
||
|
*/
|
||
|
|
||
|
|
||
|
#define ADJOINT_3X3(a,m) \
|
||
|
{ \
|
||
|
a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; \
|
||
|
a[1][0] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); \
|
||
|
a[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; \
|
||
|
a[0][1] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); \
|
||
|
a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; \
|
||
|
a[2][1] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); \
|
||
|
a[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; \
|
||
|
a[1][2] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); \
|
||
|
a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* adjoint of matrix
|
||
|
*
|
||
|
* Computes adjoint of matrix m, returning a
|
||
|
* (Note that adjoint is just the transpose of the cofactor matrix)
|
||
|
*/
|
||
|
|
||
|
#define ADJOINT_4X4(a,m) \
|
||
|
{ \
|
||
|
int i,j; \
|
||
|
\
|
||
|
for (i=0; i<4; i++) { \
|
||
|
for (j=0; j<4; j++) { \
|
||
|
COFACTOR_4X4_IJ (a[j][i], m, i, j); \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* compute adjoint of matrix and scale
|
||
|
*
|
||
|
* Computes adjoint of matrix m, scales it by s, returning a
|
||
|
*/
|
||
|
|
||
|
#define SCALE_ADJOINT_2X2(a,s,m) \
|
||
|
{ \
|
||
|
a[0][0] = (s) * m[1][1]; \
|
||
|
a[1][0] = - (s) * m[1][0]; \
|
||
|
a[0][1] = - (s) * m[0][1]; \
|
||
|
a[1][1] = (s) * m[0][0]; \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* compute adjoint of matrix and scale
|
||
|
*
|
||
|
* Computes adjoint of matrix m, scales it by s, returning a
|
||
|
*/
|
||
|
|
||
|
#define SCALE_ADJOINT_3X3(a,s,m) \
|
||
|
{ \
|
||
|
a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
|
||
|
a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]); \
|
||
|
a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
|
||
|
\
|
||
|
a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]); \
|
||
|
a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]); \
|
||
|
a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]); \
|
||
|
\
|
||
|
a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); \
|
||
|
a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]); \
|
||
|
a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* compute adjoint of matrix and scale
|
||
|
*
|
||
|
* Computes adjoint of matrix m, scales it by s, returning a
|
||
|
*/
|
||
|
|
||
|
#define SCALE_ADJOINT_4X4(a,s,m) \
|
||
|
{ \
|
||
|
int i,j; \
|
||
|
\
|
||
|
for (i=0; i<4; i++) { \
|
||
|
for (j=0; j<4; j++) { \
|
||
|
COFACTOR_4X4_IJ (a[j][i], m, i, j); \
|
||
|
a[j][i] *= s; \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* inverse of matrix
|
||
|
*
|
||
|
* Compute inverse of matrix a, returning determinant m and
|
||
|
* inverse b
|
||
|
*/
|
||
|
|
||
|
#define INVERT_2X2(b,det,a) \
|
||
|
{ \
|
||
|
double tmp; \
|
||
|
DETERMINANT_2X2 (det, a); \
|
||
|
tmp = 1.0 / (det); \
|
||
|
SCALE_ADJOINT_2X2 (b, tmp, a); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* inverse of matrix
|
||
|
*
|
||
|
* Compute inverse of matrix a, returning determinant m and
|
||
|
* inverse b
|
||
|
*/
|
||
|
|
||
|
#define INVERT_3X3(b,det,a) \
|
||
|
{ \
|
||
|
double tmp; \
|
||
|
DETERMINANT_3X3 (det, a); \
|
||
|
tmp = 1.0 / (det); \
|
||
|
SCALE_ADJOINT_3X3 (b, tmp, a); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
/* inverse of matrix
|
||
|
*
|
||
|
* Compute inverse of matrix a, returning determinant m and
|
||
|
* inverse b
|
||
|
*/
|
||
|
|
||
|
#define INVERT_4X4(b,det,a) \
|
||
|
{ \
|
||
|
double tmp; \
|
||
|
DETERMINANT_4X4 (det, a); \
|
||
|
tmp = 1.0 / (det); \
|
||
|
SCALE_ADJOINT_4X4 (b, tmp, a); \
|
||
|
}
|
||
|
|
||
|
/* ========================================================== */
|
||
|
#if defined(__cplusplus) || defined(c_plusplus)
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif /* __GUTIL_VECTOR_H__ */
|
||
|
/* ===================== END OF FILE ======================== */
|